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Abstract—The global electronic components supply chain con-
sists of tens of thousands of e-component manufacturers who fab-
ricate over a billion distinct components. These are described in
datasheets that differ in style, layout and content, and frequently
publish the salient product information in tables. Keeping up-to-
date on this information consumes a great deal of human effort
and corporate resources. Based on the motivation that AI-based
techniques are strong candidates to minimize human intervention
in many applications, in this paper, we aim at the first stage
of this problem and conduct a comparison of deep learning
methods in detecting tabular elements in these documents. Deep
learning-based object detectors are shown to be state of the
art in detection tasks in different domains therefore we chose
two cutting-edge models to adapt to this field, namely Faster-
RCNN and RetinaNet. We use backbone networks which are pre-
trained on visually salient datasets then employ transfer learning
techniques to adapt to our domain. We compare the two networks
under two different datasets, namely a dataset that is widely
used in academic studies and a private dataset that is used by
the suppliers in real supply chains. Our numerical results show
that the two networks adapt well to the domain with Faster-
RCNN exhibiting marginally better precision with more than
1% difference. However, RetinaNet stands out with promising
recall values indicating Feature Pyramid Network architecture
can potentially detect supply chain component tables better.

Index Terms—Deep Learning, Supply Chain Optimization,
Document Processing, Object Detection, Page Object Detection

I. INTRODUCTION

Modern electronic product supply chains span the globe and
as reported in [1], supply chains defined as flow of services
and information from a supplier to a customer with an entity
in the middle. Having these entities operate together requires
that they can share information. Much of this information is
today shared manually using a combination of spreadsheets,
PDF documents, emails, phone calls and faxes. These data
representations are all unstructured, and thus human effort is
required in almost every step of the supply chain to enable the
firms to work together.

Automating content extraction from the documents is a well
studied problem due to the increasing number of digitized
documents. Most documents vary in style and shape as there
are no standards governing their format. The increasing number
of documents that are available introduces the complexity and
diversity of table shapes. Since within tables important results,
technical specifications, and prices are given, which are vital to
supply chain function and optimization, accurate table detection

is the first but the most important step to achieving a solution
to this problem.

Object detection in images is a long standing open challenge
in computing. There is no well defined rule to follow in
understanding what objects are of interest within an image.
Deep learning methods are researched in the state of the art
applications as it was proven in [2] that deep convolutional
neural networks (deep CNNs) are able to interpret and process
the abstract environments in which object detection is needed
with substantially greater results than all previously seen
methods. As the way was paved showing the power of CNNs
in this application, researchers continued to improve ( [3]–[5])
and establish deep learning as the de facto solution to image
segmentation.

Within this domain many methods exist which focus on
the semantic deconstruction of documents such as those
explored in [6]–[8] all focusing on identifying and labelling
the unique elements of the documents. Each of these papers
present desirable results within the general domain of semantic
extraction of the elements, however we feel that emphasizing
training on the specific task of table extraction may result in
greater accuracy.

Fig. 1. Visualization of supply chain flow with table extraction

In this paper we compare two state of the art object
detection techniques to table detection in documents in public
datasets and a private dataset that was collected by the
Lytica team from e-components manufacturers. We aim to
establish the capabilities of the investigated methods within
this specific domain. Determining the efficacy and accuracy of
table extraction can aid us to establish a predictable standard
for automated supply chain data interchange. This would make



the case for supply chain and procurement automation and in
turn eliminate redundancies and inefficiencies associated with
human-mediated business transactions. Less human intervention
in the supply chain would reduce man hours and expenses
and enhance turnaround times for document delivery. Our
solutions processes an image in 0.4 seconds on a GPU and
gives promising results as discussed in the upcoming sections.
It is clear that, deep learning models works well on this task
and it is enough for humans to supervise the process instead
of extracting tables themselves.

The rest of the paper is as follows: Section II provides
a background on object recognition by using machine and
deep learning techniques. Section III presents the two models
compared on the sheets of supply chain data whereas Section
IV presents and discusses the numerical results comparing the
two methods. Finally, Section V concludes the paper.

II. BACKGROUND AND MOTIVATION

Billions of documents flowing through supply chains contain
vital information within the salient elements of these bodies
of text. Documents containing vital information are largely
varied in style and associated information, as such they present
the challenge of accurately extracting meaningful text from
these elements, and for our particular research interests we
examine table extraction. Scanned documents contain no meta
data or embedded text therefore methods for understanding
the abstract and varied context surrounding the elements of
these documents show that deep learning methods appear to
be strong candidates for accurate extraction.

Object Detection: Deep learning methods in object detec-
tion continue to lead the industry. [9] In [10] a CNN is proposed
which makes use of region proposal methods, and in turn
improves the mean Average Precision (mAP) of competing
methods by nearly two fold (from 35% to 53%) on Pascal
VOC dataset [11]. With this advent the stage was set for many
more advancements built on top of this, such as the fast and
the faster Regions with CNN features (RCNN) [12], [13]. The
advent of the region proposal network (RPN) was the key
change enabling the Faster-RCNN which improved upon the
accuracy of the Fast-RCNN by 8% (from 70% to 78%) on
Pascal VOC dataset [11] and being able to process up to double
the images when compared to its predecessor.

ResNet [4] is a very deep convolutional neural network
with residual connections. ResNet [4] introduced residual
connections between layers to eliminate vanishing gradient
problem. Vanishing gradient problem is where we have large
network and loss cannot backpropogate to the first layers due to
how backpropagation works. Residual connections are shown
to help solve this issue [4]. RetinaNet [14] uses ResNet as
its backbone feature extractor to show that a simpler structure
may be trained and improve upon mAP in object detection as
compared to that of the Faster-RCNN. The focus of RetinaNet
is primarily on the implementation of a new loss function
which makes an RPN unnecessary, meaning simpler (no RPNs)
structures may be used and introduce comparable, if not

marginally better, results to those of Faster-RCNN and its
other competing models.

Other Methods Considered: Statistical methods as seen
in [15] process document images for margins and text blocks
which then narrow down possible table locations and use them
to create predictions. Though this method may work without
prior training, the accuracy is considerably lower (roughly
85%) than what might be achieved through morphological or
deep learning methods. Untrustworthy results may entail more
work in corrections than simply manually labelling to begin
with.

Applying mathematical morphology methods in [16] borrows
the idea from the work in [17] which demonstrate considerably
more capable results than the statistical methods. They apply
morphological closing [17] hoping that the text in tables would
be connected to each other since they would be close. Next,
alignments of those connected components are checked to see
whether they form a table. This shows that computationally
expensive deep learning is not necessary to achieve desirable
results. However, these methods do not attain equivalent results
to which deep learning methods consistently improve.

Motivation: Due to the innate similarities between document
images and natural images, deep learning methods are highly
desirable as their strong results prove to perform greatly to ob-
ject detection. To optimize supply chain processes, automation
of tasks traditionally requiring human interaction (e.g. reading
prices from component pricing sheets) are necessary. With
the high volume of documents available in the supply chains,
table detection with accuracy differences of even 1% mean
thousands of incorrect detections, therefore sufficiently high
accuracy of greater than 90% in table detection is required to
lead into further research focusing on the semantic extraction
and understanding of their contents.

III. DEEP LEARNING METHODS UNDER STUDY

In this section, we present the details of two state of the
art object detectors and since the two architectures approach
the object detection problem in different ways, we detail the
superior elements of each.

TABLE I
TABLE OF NOTATION

i Index of an anchor in a mini-batch i
pi Objectness probability of anchor i
p∗i Ground-truth label for pi
ti A vector representing coordinates of the predicted bounding

box
t∗i A vector representing coordinates of the ground truth box

associated with a positive anchor
Lcls Classification loss
Lreg Regression loss
x, y, w, h Center coordinates (x, y) and width and height of the predicted

box
xa, ya, wa, ha Center coordinates (x, y) and width and height of the anchor

box
x∗, y∗, w∗, h∗ Center coordinates (x, y) and width and height of the ground-

truth box



A. Faster-RCNN

Faster-RCNN [13] became the state of the art in the object
detection task when it was first released. It strengthened the
defence of two-stage object detectors against single-stage
detectors. Two-stage object detection methods include candidate
bounding box proposals and are therefore supposed to be
slower but more accurate. Single-stage detectors however, do
not explicitly search for candidate boxes and this makes single-
stage detectors faster, but since their prediction space is wider
their accuracy is generally lower.

Faster-RCNN is an improved version of R-CNN [10] archi-
tecture. In Faster-RCNN, instead of using non-trainable search
algorithms, authors switched to a faster method, to extract
candidate boxes, the RPN [13]. RPNs share convolutional
layers with the backbone feature extraction network and hence
are end-to-end trainable. Authors of Faster-RCNN propose the
following loss functions that were originally presented in [13]
to end-to-end train the network:

L({pi}, {ti}) =
1

Ncls

∑
i

Lcls(pi, p
∗
i )

+ λ
1

Nreg

∑
i

p∗iLreg(ti, t
∗
i ).

(1)

tx = (x− xa)/wa, ty = (y − ya)/ha,
tw = log(w/wa), th = log(h/ha),

t∗x = (x∗ − xa)/wa, t∗y = (y∗ − ya)/ha,
t∗w = (log(w∗/wa), t∗h = log(h∗/ha)

(2)

Classification loss is logarithmic loss over two classes:
background and object. Whereas regression loss is adopted
from Fast-RCNN [12] and called ’Smooth L1 Loss’. More
details can be found in the paper [13].

Sharing layers in RPN makes Faster-RCNN faster than
previous iteration of the architecture called Fast-RCNN [12]
and the model reaches near real-time performance [13]. RPNs
use features extracted from backbone feature extractor and
generate class-agnostic candidate boxes with objectness score.
Top performing boxes are then pooled by Region of Interest
(RoI) Pooling and are sent to a classifier and a regressor. The
classifier detects if the box contains an object or background,
and the regressor refines the predicted bounding box for a
better fit. The overall architecture can be seen in Fig. 2.

Fig. 2. General Faster-RCNN of architecture with VGG-16 backbone network

We chose Faster-RCNN because it is being widely adopted
since the first publication of the architecture, and it has

been used in many tasks and domains such as face detection
[18], medical chart interpretation [19], [20], and many other
abstract object detection challenges as shown in [21]. Thus,
this architecture is shown to be suitable for transfer learning
and domain adaptation. We use Faster-RCNN with the VGG-
16 [3] backbone feature extractor network where we extract
features from an intermediate convolutional layer (conv5).
Using the VGG-16 backbone architecture provides a good
trade-off between speed and detection performance compared
to using ResNet backbone if enough computing power is not
available.

B. RetinaNet

RetinaNet is a single-stage object detector which has state of
the art performance in object detection that surpasses previous
single-stage and many two-stage detectors. [14].

pt =

{
p, if correct prediction
1− p, otherwise

(3)

FL(pt) = −(1− pt)γ log(pt) (4)

The novel contribution of RetinaNet and what makes it
perform better than other single-stage object detectors such as
YOLO [22] and Single Shot Detector [23] on natural object
datasets such as MS COCO is the new loss function the authors
introduced, namely the Focal Loss (FL) as formulated in eqs. 3
and 4 [14]. This loss function adds a tunable modulating factor,
γ, to cross-entropy loss to give more weight to miss-classified
examples.

In the single-stage object detection task, since we do not
reduce the infinite number of possible box positions to a couple
thousand, instead work is done on the possible hundreds of
thousands of possible locations. Hence, boxes that are labeled
as background class will overwhelm and dominate the gradient,
thus creating class imbalance. RetinaNet solves this imbalance
problem by reducing the effect of easily classified examples
by it’s novel loss function [14].

Feature Pyramid Networks (FPN) [24] offer a network the
capability of using different scales of an image without com-
promising the performance. Traditionally, in feature pyramids,
this was done by scaling the image and using scaled images
to extract features. FPNs, however, use a feature extractor (e.g.
ResNet [4]) and extract features from different steps. Upper
layers have semantically more value but spatial resolution
decreases. Merging these features, by 1x1 convolutions and up-
sampling, enables networks to be able to use lower and higher
level features [24]. RetinaNet combines ResNet backbone
feature extractor with FPN architecture and trained with their
novel Focal Loss function.

We use the publicly available code base of RetinaNet [25]
with backbone architecture of ResNeXt which performs slightly
better than ResNet [26] in terms of precision on MS COCO
[27]. ResNet [4] introduced residual connections between layers
to eliminate vanishing gradient problem. Vanishing gradient
problem is where we have large network and loss cannot



backpropogate to the first layers due to how backpropagation
works. Residual connections shown to help solve this issue
[4]. In ResNext [26] authors use the same architecture but in
a block consisting of different number of convolution layers,
they have more than one path (e.g. 32 paths). Despite having
many paths instead of one, they have the same amounts of
parameters to train with. In [26] authors showed that increasing
number of paths in a block from 1 to 32 decreases the error.
Using ResNeXt as backbone instead of VGG-16, like we did in
Faster-RCNN, requires more video ram which is only available
through expensive hardware.

IV. NUMERICAL RESULTS

Models ICDAR2013 Test Set

Recall Precision F1

Faster-RCNN 0.9808 0.9738 0.9773

RetinaNet w/ ResNeXt-101 0.9865 0.9617 0.9742

RetinaNet w/ ResNet-50 0.9872 0.9440 0.9651

Kavaisidis et al. [8] 0.9810 0.9750 0.9780

DeepDeSRT [28] 0.9615 0.9740 0.9677

Tran et al. [16] 0.9636 0.9521 0.9578

TABLE II
TABLE DETECTION PERFORMANCE COMPARISON FOR MODELS ON ICDAR

TEST SET.

Models Lytica Test set ICDAR2017 Test set

Recall Precision F1 Recall Precision F1

Faster-RCNN 0.9528 0.9112 0.9315 0.9685 0.9385 0.9533

RetinaNet w/ ResNeXt-101 0.9099 0.7773 0.8384 0.9748 0.9241 0.9487

RetinaNet w/ ResNet-50 0.9442 0.7649 0.8452 0.9937 0.9025 0.9459

TABLE III
TABLE DETECTION PERFORMANCE COMPARISON FOR MODELS ON PRIVATE

LYTICA TEST SET.

A. Datasets

In this study, we use a combination of public and private
datasets, namely the publicly available Marmot1 dataset, DSSE-
2002 and ICDAR-2017 Page Object Detection (POD) dataset3,
ICDAR-2013 Table Competition Test Dataset4 and private
dataset provided to us by Lytica Inc5, a supply chain company
located in Kanata, Ontario, Canada. The private dataset includes
millions of documents for electronic components. Hereafter,
we will call this private dataset, the Lytica dataset. The Lytica
dataset has interesting properties as it can be seen in Fig. 3.

1http://www.icst.pku.edu.cn/cpdp/data/marmot_data.htm
2http://personal.psu.edu/xuy111/projects/cvpr2017_doc.html
3http://www.icst.pku.edu.cn/cpdp/ICDAR2017_PODCompetition/dataset.html
4https://roundtrippdf.com/en/data-extraction/icdar-2013-table-competition/
5https://www.lytica.com/

The sheets of data come from different suppliers and thus we
have different table structures compared to other datasets that
contains tables from scientific papers. This dataset contains
documents from variety of suppliers and introduces extra
layer of difficulty when compared to public datasets such
as ICDAR table competition dataset. Page objects in public
datasets are similar to each other and this is largely because
public datasets are collected from same sources and these
sources (e.g. conferences) have structural requirements to be
met.

We have hand-labeled around 2400 documents from Lytica
dataset. As deep learning methods are data-driven methods, this
number is not enough for fully training a model or applying
transfer learning, therefore we use the public datasets as well.
700 images for validation and for testing purposes, we use a
test set of ICDAR-2017 POD that contain 817 images, in total
we have 5600 images for training.

For the sake of simplicity, we do not employ any pre-
processing or post-processing techniques to further increase the
performance of the models except adding horizontally flipped
images to the training data to increase the dataset size. However,
applying different techniques to further improve the results are
in our future agenda.

B. Training Details and Experiments

Since the amount of available annotated data is not enough
to avoid overfitting, our backbone feature extractor networks
are pre-trained on MS COCO [27] dataset which is one of the
widely used datasets in object detection benchmarks.

We adopt the Faster-RCNN method in [13], and utilize the
pre-trained VGG-16 network while RPN and fully connected
layers are employed for classification and regression in lieu of
the classification layer. We scale the image to make its shortest
side 600 pixels long and trained with mini-batch size of 1 and
128 RoI for 8 epochs while monitoring the validation loss to
avoid possible overfitting. We start with learning rate of 0.001
and then reduce it after 30000 steps.

For RetinaNet [14], we compare ResNeXt-101 [26] and
ResNet-50 [4] feature extractors. ResNet-50 architecture con-
sists of 50 layers and residual connections where ResNeXt-101
architecture is 101 layers and have residual connections as well
as different pathways inside convolutional blocks. To construct
the FPN, the last activations output are employed for each stage
block as proposed in [24]. Images are scaled to make their
shortest side 600 pixels long and then trained with mini-batch
size of 2 and 64 RoI for 5 epochs for ResNeXt-101 backend
and 9 epochs with every mini-batch containing 6 images for
ResNet-50 backend. We monitored and stopped the training
when the models started to overfit.

To compare the performance, we use Intersection over Union
(IoU) to calculate precision, recall and F1 score. For predicted
bounding box (P ) and ground truth bounding box (Gt), IoU
can be described as;

IoU(P,Gt) =
P ∩Gt
P ∪Gt

(5)



Fig. 3. Examples from private Lytica dataset. Dataset includes colored figures, state diagrams and electronical component drawings which are similar to tables.
Tables have various formats and cell sizes which makes models unstable. (Content has been blurred intentionally.)

Higher IoU score denotes significantly more overlap and if
IoU score is more than a predetermined threshold, a prediction
is considered to be true, else false.

C. Performance Comparison

In Table II, we present the comparison of the recall, precision,
and F1 scores of Faster-RCNN, RetinaNet with ResNeXt-101
backbone, and RetinaNet with ResNet-50 backbone as well as
the state of the art in the task under the public ICDAR 2013
dataset, then in Table III under our private dataset provided by
Lytica.

As seen in the Table II and III, the precision of RetinaNet
with ResNeXt-101 backbone network is higher than the
precision of with a backbone of ResNet-50 network. However,
we can observe that the ResNet-50 backbone achieves a
phenomenal recall value. Both models are eclipsed in overall F1
score on both datasets by Faster-RCNN, however as a large set
of datasheets need to be automatically read to support supply
chain automation, we believe the higher recall of RetinaNet
would provide greater value to the later supply chain processes
as not detecting tables may omit vital information. RetinaNet
with ResNet-50 backbone achieves 2.52% higher recall than
Faster-RCNN on ICDAR 2017 test set. Thus, even though
ResNet-50 backbone fails to fit bounding boxes precisely, we
can rely on the model to detect tables.

Faster-RCNN takes 0.4 seconds on average per image
whereas, RetinaNet with ResNeXt-101 network requires 0.45
seconds on average and RetinaNet with ResNet-50 network
infers an image in 0.2 seconds. When dealing with supply
chains documents, it is crucial to consider inference times of
the methods used in addition to the recall and precision.

The difference between our models indicates RetinaNet is
more capable of detecting tables but the model cannot find a
well-fitted bounding box for tables. This phenomenon can be
observed on the right side of Fig. 4. Considering the ICDAR
test set is composed of similar documents containing simpler
table structures, a drop in precision in the Lytica dataset means
that it is harder for the models to identify the structures of

tables from different sources. Tabular data is inherently linearly
aligned, and many of the misclassifications in the test data
used (both ICDAR and Lytica) consist of linearly structured
elements, such as formulas or charts. In Fig. 5, we can observe
this problem clearly. A substantial amount of data points from
the Lytica dataset in our training set decreased the overall
detection performance under ICDAR test set as well.

It is worth mentioning that PDF-based techniques have access
to the meta-data of the documents and cannot be compared
with other models directly. Using PDF meta-data is helpful but
scanned documents or tables that reside on web pages have
different or no meta-data available to use. We are aiming to
detect tables in images which is a harder problem to solve.

V. CONCLUSION

In this paper, we have compared solutions to automatically
extract data from millions of documents that represent products
in the global e-components supply chains and save valuable
human time and effort. Using the deep learning models of
Faster-RCNN and RetinaNet, even without any pre or post
processing, high precision and recall can be used to detect and
extract tables under minimal human supervision.

Checking performance on the public ICDAR dataset as well
as private document sets from Lytica, both models performed
well on ICDAR but a sharp 10% F1 score drop off has
been observed by RetinaNet under Lytica dataset. We believe
improvements could be made on RetinaNet to increase its
precision as it shows promise with high recall value (99.37%),
therefore our work shall continue to focus on improving the
RetinaNet with ResNet-50 backbone network.

Immediate extensions of this study include applying pre-
processing to the datasets as well as possible post-processing
methods to highlight table structures and regress bound-
ing boxes, thereby potentially increasing detection accuracy.
Greater efforts may be placed into labelling larger quantities
of data as the documents from Lytica accounted for less than
half of training data. This may account for the difficulty in
detecting tables on the Lytica test dataset as the e-component



Fig. 4. Visual comparison of the Faster-RCNN and RetinaNet with ResNeXt-101 backbone models. Red detections are from Faster-RCNN and green detections
are from RetinaNet. For the image on the left, detection performance is the same. But on the right, both networks have no difficulty to detect the table at the
top. However, for the table on the bottom, RetinaNet cannot even detect the table whereas Faster-RCNN detects the table with high confidence.

Fig. 5. Missclassification under Faster-RCNN and RetinaNet. On the left, two examples of miss classifications of Faster-RCNN model are presented. The
model detected formulas as tables because they have structure as well. On the right, one miss classification and one boundary issue for RetinaNet network with
ResNeXt-101 backbone are presented. RetinaNet results in less miss classifications. For example, for the examples on the left, RetinaNet does not detect a table.
But it failed on a different formula for the same reason. On the far right, RetinaNet detects a table but have a difficulty to have a fair detection performance.

datasheets are largely varied and challenging, therefore greater
numbers of examples are required to solidify network adaption
to diverse data. Training with higher mini-batch sizes with
better hardware and comparing with lower mini-batch sized
models is an interesting and a controversial topic. After the
detection of tables, we will work on semantic extraction from
the tables.
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